

Bridge Construction Bureau Department of Highways

CONTRACT DETAILS

Contract No.	: สพ. 19/2549 (31 May 2006)
Start	: 1 June 2006
End	: 20 May 2008
Period	: 720 Days
Contract Value	: 1,306,514,343.00 Baht
Liquidate Damage for delays : 3,266,285.86 Baht per day	
Owner	: Department of Highways (DOH)
Contractor	: Unique Engineering and Construction Public Company
	Limited
Designer	: Norconsult Civil Engineering Co., Ltd.
Supervision	: Bridge Construction Bureau, Department of Highways

BRIDGE DETAIS

Main Bridge De	tails
Bridge Type	: Cast-in-place Segmental Concrete Box Girder
Span Length	: 130 m. + 229 m. (main span) + 130 m. = 489 m.
Construction M	ethod : Balanced Cantilever with Form Traveler
Foundation	: 14-Bored Pile Dia. 2.00 m. per pier
Depth	: 12.50 m. (at pier) and 2.50 m. (mid span)
Approach Viadu	ict Details
Bridge Type	: Span-by-Span Cast-in-place Box Girder 2.50 m. depth
Span Length	: 48.50 m. (typical) and 40.0 m. (end span)
Construction Method : Span by Span on Stationary Shoring System and	
	Movable Scaffolding System
Foundation	: 2-Bored Pile Dia. 2.00 m. per pier

BRIDGE PERSPECTIVE

BRIDGE PERSPECTIVE

BRIDGE PERSPECTIVE

BRIDGE PLAN & ELEVATION

BRIDGE PLAN & ELEVATION

BRIDGE PLAN & ELEVATION

A PLAN SCALE 1:1000

B ELEVATION SCALE 1:1000

MAIN BRIDGE SECTION DETAILS

12.50

9.50

NUMBER

ELLIPS

(8) 11.00 b

10.50

9.25

8.00

- H = 2.42 m (AXIS 16) H = 2.82 m (AXIS 17)
- PILE TIP LEVEL TO BE VERIFIED BY ENGINEER.

ESTIMATED PILE TIP ELEVATION -54.00 m

APPROACH VIADUCT SECTION DETAILS

APPROACH VIADUCT SECTION DETAILS

APPROACH VIADUCT TYPICAL SECTION

APPROACH VIADUCT LONGITUDINAL SECTION

ABUTMENT STRUCTURE DETAILS

TRANSITION STRUCTURE DETAILS

CONSTRUCTION METHODS

Span by Span on Stationary Shoring System

Span by Span on Movable Scaffolding System (MSS)

วิธีการก่อสร้างสะพาน Main Bridge

Balanced Cantilever Method by Form Traveler Equipment

Form Traveler Equipment

Form Traveler Equipment

Construction of Main Bridge

Temporary Platform : Driving of King Posts

Temporary Platform : Placing Platform Panels

Temporary Platform : Placing Platform Panels

Bored Pile Construction

Scouring Protection Works

Main Bridge Pile Cap Construction Method

Pile Cap Construction Method

TISUUTWARD

TISHUT WAR

1. INSTALL SUPPORT BEAM, PRECAST PLANK AND RC SKIRT

TISLUTWAR

2. CASTING 1ST LAYER 1.00 M THICK (SUPPORT ON PC PLANK)

TISHUT WAS

- 2. CASTING 1ST LAYER 1.00 M THICK (SUPPORT ON PC PLANK)
- 3. CASTING 2ND LAYER 1.15 M THICK (SUPPORT ON 1ST LAYER CONCRETE WITH ADDITIONAL R/F PROVIDE IN 1ST LAYER)

TISHUTWAS

- 1. INSTALL SUPPORT BEAM, PRECAST PLANK AND RC SKIRT
- 2. CASTING 1ST LAYER 1.00 M THICK (SUPPORT ON PC PLANK)
- 3. CASTING 2ND LAYER 1.15 M THICK (SUPPORT ON 1ST LAYER CONCRETE WITH ADDITIONAL R/F PROVIDE IN 1ST LAYER)
- 4. STRESSING 7 PT TENDONS

CONSTRUCTION STAGE OF PILE CAP

- 1. INSTALL SUPPORT BEAM, PRECAST PLANK AND RC SKIRT
- 2. CASTING 1ST LAYER 1.00 M THICK (SUPPORT ON PC PLANK)
- 3. CASTING 2ND LAYER 1.15 M THICK (SUPPORT ON 1ST LAYER CONCRETE WITH ADDITIONAL R/F PROVIDE IN 1ST LAYER)
- 4. STRESSING 7 PT TENDONS
- 5. CASTING 3RD LAYER 2.00 M THICK UP TO TOP OF PILE CAP

TISLUTWAS

TISLUT WAS

CONSTRUCTION STAGE OF PILE CAP

- 1. INSTALL SUPPORT BEAM, PRECAST PLANK AND RC SKIRT
- 2. CASTING 1ST LAYER 1.00 M THICK (SUPPORT ON PC PLANK)
- 3. CASTING 2ND LAYER 1.15 M THICK (SUPPORT ON 1ST LAYER CONCRETE WITH ADDITIONAL R/F PROVIDE IN 1ST LAYER)
- 4. STRESSING 7 PT TENDONS
- 5. CASTING 3RD LAYER 2.00 M THICK UP TO TOP OF PILE CAP
- 6. CASTING CONCRETE ON ELLIPTICAL PARTS

UST MINUT

- WITH ADDITIONAL R/F PROVIDE IN 1ST LAYER)
- 4. STRESSING 7 PT TENDONS
- 5. CASTING 3RD LAYER 2.00 M THICK UP TO TOP OF PILE CAP
- 6. CASTING CONCRETE ON ELLIPTICAL PARTS
- 7. STRESSING THE REMAIN TENDONS (21 TENDONS)

Installation of Supporting Beams

Installation of PC Plank and RC Skirt Panel

Installation of RC Skirt Panel

Rebar for 1st Layer of Concrete Pile Cap

Layout of Post-Tensioning Ducts in Pile Cap

Concreting of 1st Layer

Rebar for 2nd Layer of Concrete Pile Cap

2nd Layer of Concrete Pile Cap

Stressing of 7 Tendons (1st Stage)

Rebar for 3rd Layer of Concrete Pile Cap

3rd Layer of Concrete Pile Cap

Stressing of 21 Tendons (Remaining Tendons)

Grouting of Tendons in Pile Cap

Main Bridge SuperStructure Construction Method

BRIDGE PLAN & ELEVATION

Introduction

Project Description

- Location : Highway Route No. 303 (Ratanathibeth)
- Bridge Geometry :
- The Main Bridge is Twin boxes Balanced Cantilever type consist of 3 spans, 130 m _ 229 m. _ 130m.
- Over all Cross section dimensions are W = 27.6 m. at top W bot. varies 12.06 m to 15.34 m. Max. Segment Length = 5.00 m. Min. Segment Length = 3.50 m. Profile grade varies + 0.177 to -1.141% Cross slope varies +2.5% to - 4%
- No of Segments Cast Using Formtraveller = 92
- Max. Segment weight = 359 ton (5.00 m)
- Max. Segment weight = 331 ton (4.00 m)
- Max. Segment weight = 315 ton (3.50 m)
- Hammer head length = 13.75 m.

Typical cross-section Main Bridge

Construction Sequence

Balanced Cantilever Method by Form Traveler Equipment

Balance Cantilever Bridge Construction

- Symmetrical Construction and
- Non Symmetrical Construction
 - To reduce out of balance moment from segment dead load during construction.

During free cantilever construction, it is impossible to have true balance condition.

1. Symmetric cast balance cantilever construction.

Advantages:

- Construction completes at left and right section at the same time.
- Original PT layout can use for construction
- Minimize out of balance load effect to the pier.
- Deflection pattern is not complicate & easy to monitor.

Disadvantages:

- Required to finish many activities at the same time.
- Construction activities are dependable at each side.
- Simultaneously working at both side is difficult to control effectively.
- Cycle time for construction is longer

Symmetric cast balance cantilever construction.

ПΤ

ſ

2. Non-symmetric cast balance cantilever construction.

Advantages:

- Construction on both sides are independent.
- Make benefit of reserved capacity of pier head for out of balance loading.
- Controlling of works easy and effective.
- Concreting can be partial or full section.
- Overall cycle time for the construction can be reduced.

Disadvantages:

- If not design in advance, additional temporary prestressing arrangements are required for continuous working of Formtraveller at certain section.
- Deflection pattern is more complicated.

Non-symmetric cast balance cantilever construction.

Cross-Section Pier Table

PHASE 13

14.1 MOVE BB(2) TO SEGMENT H 14.2 CASTING SEGMENT I 14.3 STRESSING TENDON (10) AND (10), 3 TENDONS

15.1 MOVE BB(1) TO SEGMENT [15.2 CASTING SEGMENT [' 15.3 STRESSING TENDON (S11) AND (T11), 3 TENDONS

16.1 MOVE BB(2) TO SEGMENT I' 16.2 CASTING SEGMENT J 16.3 STRESSING TENDON (12) AND (12), 3 TENDONS

17.1 MOVE BB(1) TO SEGMENT J 17.2 CASTING SEGMENT J 17.3 STRESSING TENDON (S13) AND (T13), 3 TENDONS

18.1 MOVE BB(2) TO SEGMENT J' 18.2 CASTING SEGMENT K

18.1 MOVE BB(2) to segment J' 18.2 Casting segment K 18.3 Stressing tendon (14), 3 tendons

19.1 MOVE BB(1) TO SEGMENT K 19.2 CASTING SEGMENT K 19.3 STRESSING TENDON (515) AND (T15), 3 TENDONS

Construction of Main Bridge Columns

Pier Head Segment : Bottom Formwork Installation

Pier Head Segment : Bottom Slab & Kicker (Stage 1)

Pier Head Segment : Web & Diaphragm (Stage 2)

Pier Head Segment : Web & Diaphragm (Stage 3)

Pier Head Segment : Web & Diaphragm (Stage 4)

Pier Head Segment : Web & Diaphragm (Stage 5)

Pier Head Segment : Top Slab (Stage 6)

Assembly of 1st Bridge Builder (Form Traveler) on Pier Head Segment

Formtraveller

• The formtraveller is a comprehensive movable formwork system for balance cantilever Bridge construction.

- 1. Main Rail
- 2. Main Frame
- 3. Rear Frame
- 4. Front Beam
- 5. Internal Beam
- 6. Bottom Slab
- 7. Internal Deck Slab
- 8. External Deck Slab
- 9. External Web, Internal Web
- 10. Main Jack
- 11. Launching Cylinder
- 12. Pull Down Cylinder
- 13. Formtraveller Tie Down System
- 14. Main Rail Tie Down System
- 15. Hanging Bar System

- 1. Main Rail
- 2. Main Frame,
- 3. Rear Frame
- 4. Front Beam
- 5. Internal Beam
- 6. Bottom Slab
- 7. Internal Deck Slab
- 8. External Deck Slab
- 9. External Web, Internal Web
- 10. Main Jack
- 11. Launching Cylinder
- 12. Pull Down Cylinder
- 13. Formtraveller Tie Down System
- 14. Main Rail Tie Down System
- 15. Hanging Bar System

- 1. Main Rail
- 2. Main Frame,
- 3. Rear Frame
- 4. Front Beam
- 5. Internal Beam
- 6. Bottom Slab
- 7. Internal Deck Slab
- 8. External Deck Slab
- 9. External Web, Internal Web
- 10. Main Jack
- **11. Launching Cylinder**
- 12. Pull Down Cylinder
- 13. Formtraveller Tie Down System
- 14. Main Rail Tie Down System
- 15. Hanging Bar System

- 1. Main Rail
- 2. Main Frame,
- 3. Rear Frame
- 4. Front Beam
- 5. Internal Beam
- 6. Bottom Slab
- 7. Internal Deck Slab
- 8. External Deck Slab
- 9. External Web, Internal Web
- 10. Main Jack
- 11. Launching Cylinder
- 12. Pull Down Cylinder
- 13. Formtraveller Tie Down System
- 14. Main Rail Tie Down System
- 15. Hanging Bar System

- 1. Main Rail
- 2. Main Frame,
- 3. Rear Frame
- 4. Front Beam
- 5. Internal Beam
- 6. Bottom Slab
- 7. Internal Deck Slab
- 8. External Deck Slab
- 9. External Web, Internal Web
- 10. Main Jack
- 11. Launching Cylinder
- 12. Pull Down Cylinder
- 13. Formtraveller Tie Down System
- 14. Main Rail Tie Down System
- 15. Hanging Bar System

Operation of Formtraveller

- Step 1. Ensure Formtraveller supported on main Jack and rear tie down system and express roller are free from Main Rail.
- Step 2. Remove lower tie down of Main Rail
- Step 3. Loosened upper tie down of Main Rail

Operation of Formtraveller

Step 4. Move Main Rail

forward by Launching Cylinder up to the CJ of the finished construction.

Step 5. Levelled the Main Rail and secure it with upper tie down at rear.

Step 6. Remove all the horizontal tie bars between webs.

Launching of Formtraveller

- **Step 7.** Remove rear thread bars at bottom slab.
- Step 8. Remove rear thread bars of top slab formwork
- Step 9. Lower Formtraveller on to the Main Rail at front Bogie
- Step 10. Lower the Pull Down Cylinder and clamped to Main Rail
- Step 11. Remove Rear Tie down System of Formtraveller and activate Rear Bogie.
- Step 12. Use Launching Cylinder to launch Formtraveller and external formwork system

Operation of Formtraveller

- Step 13. Setup and fixed lower tie down for Main Rail and rear tie down system for Formtraveller with Thread Bar Dia. 36 mm.
- Step 14. Release the thread bars of Main Rail Held down and shift forward to set behind the pull down cylinder
- Step 15. Setup External Formwork system
- Step 16. Install Reinforcement for bottom slab and webs.
- Step 17. Move forward internal formwork and install tie bars for the webs.

Operation of Formtraveller

Step 18. Install top slab reinforcement

Step 19. Final check for concreting

Step 20. Pouring concrete.

Step 21. Post tensioning after the concrete reach required strength.

Block- out at the Bridge

Block-out Holes for Formtraveller System

 Location of each holes at every segments to be concreted are specifically provided for fixing bridge builder system.

Designated Holes are used as follows:

- Hole No. I Fixing Bottom Slab during Concreting
- Hole No. II Fixing Ext. Formwork during Concreting
- Hole No. III Fixing Int. Formwork during Concreting
- Hole No. IV Fixing Int. Formwork during moving
- Hole No. V Fixing Rear Tie Down System
- Hole No. VI Fixing of Main Rail, Upper
- Hole No. VII Fixing of Main Rail , Lower

Form Traveler

Assembly of 1st Bridge Builder (Form Traveler) on Pier Head Segment

Assembly of 1st Bridge Builder (Form Traveler) on Pier Head Segment

Assembly of Form Traveler (Bridge Builder)

Construction Cycle

Launching Bridge Builder (Form Traveler) to New Segment

Set up Outer Web Formwork

Set up Outer Deck Formwork

Placing Bottom Slab Rebar and Web Rebar

Move and Set up Inner Formwork

Placing Top Slab Rebar and Prestressing Tendon

Casting Main Bridge Segment (Bottom Slab)

Casting Main Bridge Segment (Web)

Casting Main Bridge Segment (Top Slab)

Stressing Transverse Prestressing Tendon

Stressing Longitudinal Prestressing Tendon

MAIN BRIDGE POST TENSIONING SEQUENCE

Cast Segment A & A'

Cast Segment B & B'

New Pranangklow Bridge

New Pranangklow Bridge

Bored Pile Construction Dia. 2.00 m. and 1.50m.

River Pile

Land Pile

Casing Installation

Checking of Casing Position during Driving

Bucket and Drilling Equpment

During Drilling

Density < 1.10g/ml during drilling 1.05g/ml before concreting

Viscosity > 40sec. after mixing 37sec. during drilling 37sec. before concreting

Testing of Drill Hole Slurry : Polymer-based Slurry

pH < 9 - 10 during drilling 9 - 10 before concreting

Sand content < 5% before concreting

Testing of Drill Hole Slurry : Polymer-based Slurry

Drilling Monitor Equipment

Test Results

Drilling Monitoring of Bored Hole

Installation of Rebar Cage

Tremie Pipe Installation

During Casting

Concreting of Bored Pile

During Testing

Test Results

Pile Integrity Test of Concrete Pile

ф 2.00 ม.

• 1.50 ม.

Graphic Patterns of Pile Integrity Test

Coring Equipment

During Grout (60 bars for 5 min.)

Compaction Grouting at Pile Toe

Hydraulic Jacks for Pile Load TestSetting of Pile Load Test InstrumentsTest Load : 4,000 ton (Dia. 2.00 m.)2,600 ton (Dia. 1.50 m.)Static Load Test of Bored Pile

Construction of Approach Viaduct

Pile Cap Construction

Lean Concrete

Pile Cap Construction

Concrete of Pile Cap and Column Starter Bar

Column Rebar

Concreting by Bucket

Temporary Falsework

Main Tendons

Transverse Tendon in Top Slab

Stressing of Main Tendons

Stressing of Transverse Tendons

Finished Cross Beam

Cement Grouting Mixer

Flow Test

False works

Bottom and Side Formworks

Span by Span on Stationary Shoring System

Movable Scaffolding System

Bottom and Side Formworks

Span by Span on Movable Scaffolding System (MSS)

Rebar and Post-Tension Ducts

Inner Formworks

Stationary Shoring System

Movable Scaffolding System

Concrete Casting Method

Bottom Formwork for Top Slab

Rebar and Transverse Tendon

Top Slab

Curing Method

Stressing of Tendons in Top Slab

Stressing of Longitudinal Tendons

แครื่องเสียงไฮเอ็นด่ ASUDDAS

Cement Grouting Mixer

Grouting in Longitudinal Tendon

